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LEITER TO THE EDITOR 

Off-critical integrable vertex models and conformal theories in 
finit e geometries 

H Saleur 
Service de Physique Thkoriquei, Centre d’Etudes Nuclkaires de Saclay, F-91191 Gif-sur- 
Yvette Cedex, France 

Received 19 September 1988 

Abstract. We calculate the order parameters (local height probabilities) in the ordered 
phase of integrable SU(n) vertex models. We show that they have formally the same 
expression as the partition functions of the associated critical theory in a finite box with 
appropriate boundary conditions, once the distance to criticality in the former case is 
properly identified with the modular parameter in the latter. This points out a relation 
between off -critical integrable models and conformal theories in a finite geometry. 

In the last few years, our understanding of two-dimensional critical phenomena has 
considerably increased through the systematic application of conformal invariance [ 11. 
The most challenging open problem now is probably the unification of these develop- 
ments with the theory of integrable systems [2-41. In particular, for a given (solvable) 
conformal field theory one knows [ 5 , 6 ]  (in general) a lattice model whose critical 
point corresponds to this theory, but which is integrable for all temperatures. A natural 
question to ask, then, is the relation between this generic integrability and the conformal 
invariance which appears at a special point only. Remarkably, it was observed in [7] 
that the order parameters (local height probabilities) in the low-temperature phase 
(regime 111) of the integrable models associated with the various discrete series of 
conformal theories have expressions which merely parallel the Goddart et al [8] 
construction for characters of these theories. This suggests that the off -critical integrable 
direction is deeply related to the critical point, and should correspond to some simple 
deformation of the conformal symmetry. 

In this letter we consider the case of SU( n) vertex models. These have an integrable 
curve in the parameter space, Boltzmann weights being parametrised by trigonometric, 
rational or hyperbolic functions. The first region corresponds to a critical model and 
terminates at the rational point which is described by an SU( n) Wess-Zumino-Witten 
(wzw) theory [ 9 ] ,  while the second region is ordered. We calculate in the latter case 
the local height probabilities and show that they have the same expression as the 
(continuum limit) partition functions at the wzw point in a box with appropriate 
boundary conditions. In this case, going off -criticality in the integrable direction is 
thus equivalent to putting the critical theory in a finite geometry. The correspondence 
between distance to T, and finite size p is non-universal, but satisfies p 6 (where 6 
is the correlation length) when approaching the critical point. 
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We start by considering the fundamental SU(2) vertex model, i.e. the six-vertex 
model [4]. This is defined by putting arrows on the bonds of the square lattice in such 
a way that the current is conserved at each node, thus giving rise to six possible vertex 
configurations (figure 1). Imposing invariance under reversal of all arrows, one is left 
with three free parameters, the Boltzmann weights cy, p, y 2 0. Transfer matrices with 
the same value of A = (cy2+P2- y2)/2cyp commute, and in the very anisotropic limit 
they give rise to the spin-$ X X Z  antiferromagnetic quantum chain with Hamiltonian 

2'tcy-C (a :~ :+ ,+a;y~y+ , -A ,5a l t l ) .  (1) 
J 

In the following it will be convenient to transform this model into an (unrestricted) 
solid-on-solid model [ 101. This is simply done by introducing height variables cp E Z 
on the dual lattice in such a way that neighbouring cp differ by i l ,  depending on the 
arrow which separates them. The region A > 1 is frozen with vertices of one kind (1-4) 
only, corresponding to a totally stretched surface. The region (A(  G 1 is the rough 
phase; the model is then critical and renormalises onto a Gaussian model with action 

and hence the central charge is c = 1. Setting A = -cos A, A E [0, TI, one has (in the 
scale where topological defects are not renormalised) [ 111 

g = l - A / r  (3) 

cy=sinA (1 -U)  p = sin A U y = sin A (4) 

while the Boltzmann weights can be parametrised by trigonometric functions 

where U is the spectral parameter. 
The point A = -1  corresponds to the roughening transition [ 101. The generic U( 1) 

symmetry is then enhanced into an SU(2) symmetry (a sign of which is the isotropy 
of ( 1 ) )  and accordingly the model (2) becomes equivalent to the SU(2) level-1 wzw 
model [9]. The region A < -1 is the flat phase (here A becomes purely imaginary 
A = i i ,  and the weights are parametrised by hyperbolic functions). A ground-state 
configuration has then the same height, say b, on the centre site and those separated 
from it by even steps, while all other heights assume another fixed value, say c (c  = b i 1). 
The local height probability (LHP)  P(a /  b, c ) ,  i.e. the probability of finding the central 
site in state a while the boundary heights are fixed to those of the ground state specified 
by b and c, has been calculated [12] 

[ ( b+ c) /2-aI2/4 

In this expression p = exp( -4i) ,  A = -cosh x. 
Equation (5) involves a quadratic dependence upon the difference in heights which 

is reminiscent of the Gaussian model (2), and this correspondence can be made more 

+++I++++ U - 

P T 

Figure 1. Vertices of the six-vertex model. 
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precise. Indeed we can consider the partition function of the above solid-on-solid 
model in the rough phase in a finite geometry consisting of a rectangle T x L with 
sides identified in the time direction, while heights on the bottom line Lfl have the 
same value a, and heights on the two top lines T2 (resp. LfJ are equal to b (resp. c) 
(figure 2 ) .  (The parity of L must of course be adjusted to the one of c - a.) Fixing 
heights along Lfl is easily realised by keeping there only external vertices which conserve 
the current. Fixing heights along T2 and Lf3 is realised in the same way by imposing 
that all the corresponding external vertices be the same. Finally the height difference 
between top and bottom must be c - U .  

E l  T 

Z 

Figure 2. The finite box considered can be mapped onto an annulus in the plane which 
is reminiscent of the geometry used in the calculation of local height probabilities. 

To calculate the partition function of such a system one would like to use the 
mapping onto ( 2 ) .  The simplest situation arises when heights are fixed along Lfl and 
T3 only. In this case one finds in the continuum limit (i.e. when T, L + CO keeping 
T I L  fixed) 

[dv l  e x p ( - 4 .  ( 6 )  I Z( a /  c)  = 
~ ( x + ~ , y ) = ~ ( x , ~ ) , ~ ( x , O ) = a , 9 ( x , l ) = c  

The functional integral with a = c is calculated by zeta regularisation, and the height 
difference taken into account by introducing the classical field cpcl = ( c  - a ) y / L  to give 
~ 1 3 1  

g ( c -  a )*/4 

Z( a /  c) = (7) 
T ( 4 )  

where q = exp(-.rrT/ L )  and T ( q )  = q1'24 IT? (1 - q " )  is Dedekind's function. Fixing 
heights on both Lf2 and Lf3 is more difficult to handle. To derive the corresponding 
shift on the ground state one can use Bethe ansatz calculations on the X X Z  chain (1) 
with fixed a t ,  following [14]. The result is 

q g [  b t 1--(1/2g)-aI2/4 

Z ( a / b ,  b+ 1) = (Sa)  
T ( 4 )  

,g [~- l+(1 /2g) -01*/4  

Z ( a / b ,  b - 1) = 
T ( 4 )  

These two expressions become identical at the higher symmetry g = 1 point, giving then 
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Remarkably ( 5 )  and (9) are completely similar and the LHP in the flat phase can be 
formally calculated as 

This is a first example where some properties of an integrable model off-criticality 
and in the thermodynamic limit can be related to those of the same model at criticality 
but in a finite (continuum) geometry. Instead of the above box, it is perhaps more 
natural to consider, after conformal mapping on the plane, an annulus with heights 
fixed to a at the centre and to b, c at the boundary, the outer and inner circles being 
in the ratio p (figure 2). A natural value of T is then 2 ~ ,  while L = In p .  Of course 
the correspondence (9) needs the precise identification of the distance to criticality 
with the modular parameter. The model is critical for i+ 0, i.e. p +  1; with the 
correspondence q = p ,  p behaves in this limit like 

p a  exp r2/2X. (11) 

It is interesting to notice that (1 1) is precisely the formula for the correlation length 
of the model in the same limit, i.e. p a  6 [4]. This latter relation is expected since from 
finite scaling an order parameter which scales like m a 5" for an infinite system close 
to criticality will behave like m ap'  at criticality in the geometry of figure 2. 

We turn now to the higher SU(2) level-k vertex models. They are obtained [15] by 
assigning to each bond of the square lattice one of k +  1 possible states (which can be 
conveniently represented by arrows carrying a current j = - k, - k + 2, . . . , k; see figure 
3) with a conservation rule at each node. If k = 2, one gets for instance the 19-vertex 
model of [ 161, if k = 3 a 44-vertex model, . . . . In the rather large space of parameters, 
an integrable curve is known, which is obtained starting from the six-vertex (k  = 1) 
model by a fusion procedure [15]. Schematically, to obtain the Boltzmann weights one 
considers a k x k cell of the level-1 model with well defined inhomogeneities but all 
vertices having the same value of A, one sums over all internal variables, and one 
projects outer variables onto fully symmetric tensors. In the very anisotropic limit, 
the transfer matrices define a spin-ik X X Z  quantum chain [17]. 

Figure 3. Bond states in the SU(2) level-3 model, carrying respectively a current j = -3, 
- 1 , l ,  3. They are associated with jumps j ofthe variable cp, and to rotations e x p [ ( 2 i ~ / 3 ) (  j +  
3)/2] of the Z3 variable. 

One can reinterpret the model as an unrestricted solid-on-solid model as well, with 
height variables Q E Z on the dual lattice, neighbouring Q differing now by an amount 
- k, - k + 2, . . . , k which depends on the bond that separates them. The phase diagram 
is directly deduced from the one of the six-vertex model. The first interesting region 
is the rough phase where the model is critical and Boltzmann weights are parametrised 
by trigonometric functions. The associated conformal theory was found in [ 181. The 
heights Q contribute to a bosonic part; on the other hand, one can consider the 
additional bond-degrees of freedom as associated to a Zk model low-temperature 
expansion, a current j corresponding to a rotation of e x p [ ( 2 i ~ / k ) ( j +  k)/2] of the Z k  
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variable. In the continuum limit these two aspects decouple (except for boundary 
condition effects) and one gets a theory which is the product of a free bosonic field 
times a Z k  parafermion [19] (in the 19-vertex model case, for instance, one gets a 
superfree field) with central charge c = 3 k/ ( k  + 2). 

The coupling constant g of the bosonic part is known [18] 

g =  l / k - A / r  (12) 

where A parametrises the underlying six-vertex model of the fusion. The roughening 
transition occurs at A = 0, g = 1/ k where the symmetry is enhanced to SU(2) and the 
model becomes equivalent to the SU(2) level-k wzw model. After this point one enters 
a flat phase with weights parametrised by hyperbolic functions, and ground states still 
characterised by a pair of heights b, c. We have calculated the corresponding local 
height probabilities using results of [5] in which Jimbo et a1 consider restricted models 
where heights cp belong to a finite set. It is then sufficient to take the appropriate limit 
of their result, in a way similar to [12], to find 

C L ( P )  [ ( b + c ) / 2 - a I z / 4 k  

E a !  P 
P 

P(a /b ,  c) = [ ( b + c ) / 2 - a ’ l 2 / 4 k  . 
In this formula p = exp( -41), where 1 parametrises the underlying six-vertex model 

of the fusion. 1 = (c  - b + k)/2, m = c - a + k - I mod 2k and CL is the SU(2) level-k 
string function [20]. We have assumed without loss of generality that the centre and 
the boundary lie on different sublattices, which ensure that 1 and in have the same 
parity, and thus C!,, # 0. 

Now we can compare (13) to the partition function of the associated critical model 
at the roughening point in a box T x L with heights fixed to a on 2, and b (resp. c) 
on S2 (resp. z3) as above. Since the conformal theory is a product of a free bosonic 
field and a Z k  parafermion, we know [21] that this partition function has to be the 
product of some q h / v ( q )  times a string function, or may be a combination of such 
terms. Remembering (9) and (12) we expect for the bosonic part a contribution 

In the case b = c  which is allowed if k is even this reproduces in particular (7)  
with the appropriate coupling constant g = 1/ k. The remaining part is more delicate 
to handle. A simple case is when b - c = *k. Then, fixing the boundary vertices 
corresponds simply to having fixed values at the boundary for the parafermionic degrees 
of freedom. From top to bottom, since a bond with current j corresponds to a rotation 
exp[(2ir /k)( j+k)/2] ,  and since 2, and Lf3 have been chosen to lie on different 
sublattices so an odd number of bonds has been crossed, the total rotation of the Z k  
variable is exp[(2in/k)(c - a + k)/2]. In this case the partition function can be shown 
to be [21], generalising [22], 

Zp,= C : - a + k m o d 2 k  = C O , - c + k n m d 2 k .  (15) 

In writing this last equality the symmetry 

cl, = C f , + Z k  = c‘, 
was used. Recall also that 
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In the general case ZpF will be a combination of string functions, the indices of which 
depend on c - a  and on the state of the bond fixed at the top of the system, i.e. 
( c -  b+ k ) / 2 .  To avoid any spurious periodicities in the final result, it is reasonable 
to assume that the dependence of the indices is linear. Then using (15) we are necessarily 
left with l = c u ( c - b + k ) / 2 ,  m = c - a + p ( c - b + k ) / 2 + k .  Moreover if b = c - k  (15) 
must be recovered, which can happen only through (16b), with a = 1, p = -1. Thus 

(17)  

As expected (17) is invariant under 'complex conjugation' ( c  - b + k ) / 2  + 

c - h + k ) / 2  zp,= c' c - a t k - ( c - b + k ) / 2 '  

k - ( c - b + k ) / 2 ,  c - a + k + k - ( c - a ) .  Collecting (14) and (17) we find 
[ ( b  t c ) / 2 - a I 2 / 4 k  

(18) 

This formula has the same structure as the local height probability (13), so (10) holds 
true for SU(2)  level-k models as well. On the other hand, we have calculated the 
singular behaviour of the correlation length when approaching the roughening point 
using results of [16]. Here also [Kexp .ir2/2x so the correspondence q = p  satisfies 
again p CC [ in this limit. 

Finally, we turn to the case of S U ( n )  (level-1) vertex models [23].  These are defined 
by associating to each bond of the square lattice one of the variables .i?l = &!(A' -A'-') ,  
where the A' are the fundamental weights of S U ( n ) ,  and we have set A'= Ant' = 0 
(figure 4). The possible vertices are shown in figure 5, with the integrable weights 

( c - b + k ) / 2  
C c - a t k - ( c - b + k ) / Z *  

4 Z( a /  b, C )  = 
T ( 4 )  

a = s i n A  ( 1 - U )  

p = sin A U (19) 

y = sin A exp[Au sgn( i - j ) ] .  

(In the case n = 2, one recovers (4), due to the fact [4] that there are then as many 
vertices of the third type with i > j  as with i < j . )  The model can be transformed into 

Figure 4. Bond states in the SU(3) model, together with a part of the weight lattice. 

4 e^, 4 
a P 1 

FigureS. Allowed vertex and associated configurations ofthe (p variable in the SU( n )  model. 
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an unrestricted solid-on-solid one by introducing on the dual lattice height variables 
q which take values in P' equal to 4 times the weight lattice of SU(n).  If A in (19) 
is real, one has a critical rough phase that renormalises onto an ( n  - 1)-component 
free field [24] with action similar to (2) and g still given by ( 3 )  [25]. A = O  is the 
roughening point, where the symmetry is enhanced from U( 1)"-l x Z, to SU( n ) ,  and 
the model is equivalent to the SU(n)  level-1 wzw model. The region A =iX purely 
imaginary is a flat phase. The ground-state configurations are then fundamental cells 
of P' described clockwise, i.e. bl ,  b2 = bl + i?,, . . . , b, = b,-l + &, and are characterised 
by any two successive points of the cell bi ,  bi+]. The corresponding local height 
probabilities can be obtained by taking the appropriate limit of the results of [6] 

where p = exp(-2nX). On the other hand we can consider the partition function on 
the box T x L in the rough phase. As in (7), if heights were fixed along 9, and z3 
only, this would be 

Fixing heights along 9, and Z2 induces correction terms in the exponent of q as in 
(8). We expect all those to give a single expression at the higher symmetry point g = 1, 
i.e. 

I :, x; = , (b, - a 1 I */4 

(22) 
c77(4)1"-1 ' 

Z [ a / b , ,  b,+1l= 

We see now that relation (10) is also valid. This time, q must be identified with 
p = exp(-2nX). The correlation length on the other hand was calculated in [24] and 
diverges like [cc exp( T'/ HI), so p a  .$ still holds true. 

In the cases we have considered, and as far as order parameters are concerned, 
going off -criticality in the integrable direction is thus equivalent to putting the critical 
conformal theory in a finite box. This observation provides a new relation between 
integrability and conformal invariance. It would be most desirable to extend it to 
restricted models [26]. 
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